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1 Introduction

Geometric invariants play a key role in object recognition where the object of interest is af-
fected by a group of transformations. A modern approach to them was taken by Weiss (1993);
Bruckstein & Shaked (1998); Olver (1999); Aghayan et al. (2014), and Aghayan (2021a,b, 2018,
2017, 2015); Nadjafikhah & Aghayan (2012), etc.

In visual applications, the transformation group G is, typically, either the Euclidean, affine,
similarity, or projective, called visual groups. We are particularly interested in how the geometry
induced by G1 applies to curves contained in the plane E ≃ R2. This paper undertakes a
systematic investigation of these groups and their fundamental invariants.

This paper is organized as follows. Section 2 presents our approach to determine the intrinsic
invariants associated with a geometric property - in our study Length, Angle, and Area, and
derives the visual curvatures. We also discuss the relation between convexity and regularity.
Section 3 starts with the well-known Euclidean Frenet-Serret frame and formulas, then, gives
the associated moving frames and formulas in the similarity and affine geometries. For each
visual group, we describe the derivatives of a regular smooth curve in the TN frame to derive
the associated fundamental invariants in terms of the inner and cross products. Besides, we
bring forward a geometric interpretation by presenting the visual angle in each geometry and
showing that this angle determines the normal direction in that geometry. This section ends
with expressing the visual curvatures in terms of the tangential angles. Section 4 introduces
“visual Structural equations”, indicating that any regular smooth curve in a visual geometry
satisfies a unique differential equation of order 3, and offers its converse as a conjecture.

1in Euclidean, affine, and similarity cases. The same process could be accomplished for Projective group.
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2 Visual-Geometric Features and Intrinsic Invariants

According to Olver (1999), any r-dimensional visual group G acting on the space E ≃ R2 admits
a unique (up to function thereof) differential invariant κG of order r−1, called the G-curvature,
and a unique (up to constant multiple) invariant one-form dιG of order at most r−2, called the
G-arc length. Besides, every other differential invariant is a function I = I(κG, κ

′
G,ι, κ

′′
G,ι, . . .) of

the G-curvature and its derivatives with respect to the G-arc length element.
As mentioned above, determining the fundamental invariants associated with a geometric

property of interest plays a central role in recognition problems and finding symmetries. Our
method to derive them involves the following steps.

Let γ : [a,b] ⊂ R −→ R2 be a regular and s-smooth 1 curve.
Step 1. Determining the arc length dι associated with ‘the geometric feature of interest’ χ

- in our study Length, Angle, and Area.
Step 2. Finding two vectors υ(γ

′
ι, γ

′′
ι , . . .) and ω(γ

′
ι, γ

′′
ι , . . .) in terms of the derivatives of the

given curve with respect to the arc length ι such that the value of the feature of interest is 1 -
in other words, χ(υ, ω) = 1.
It is obvious that the method presents the simplest invariant if the vectors υ and ω are (as much
as possible) in terms of the lowest derivatives.

Step 3. Finally, taking the derivative
d

dι
(χ(υ, ω))= 0 results in the intrinsic curvature.

In the following, we apply our method to derive the intrinsic curvatures associated with
Length, Angle, and Area.

- Length
Let γ = x ı̂ + y ĵ and χ(v,w) = v · w denote the inner product of two vectors v and w.

Step 1. Since ∥v∥ =
√
v · v for the Euclidean norm ∥ ∥, we consider

ds = ∥dγ∥ =
√
dx2 + dy2 (1)

as the arc length for this case.
Step 2. Hence, assuming υ = ω =dγ

ds gives

χ(υ, υ) = ∥dγ
ds

∥ = 1. (2)

Step 3. Finally, taking the derivative on both sides results in

d2γ

ds2
= κ

dγ

ds
. (3)

It is easy to check that

κ(p) =
dϕ

ds
(p) (4)

in which ϕ(s) denotes the tangential angle of the curve γ, see FIG. 1.

 

p 

Figure 1: The tangential angel of a smooth curve γ at p.

Moreover, the rate of change in the direction of the tangent line with respect to “s” is clearly
the simplest invariant of the Euclidean motions that preserve Length.

Note also that, the curve γ must be regular and 2-smooth to have the invariant curvature κ
well-defined.

1γ is said to be s-smooth if it is s times differentiable. Also, is regular if its first derivative never vanishes.
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- Angle
In this case, let χ(v,w) = v·w

∥v∥∥w∥ denote the angle between two vectors v and w.

Step 1. By reparameterizing the curve γ with the tangential angle ϕ , we consider

dσ = dϕ (5)

as the associated arc length. Therefore, identity (4) gives

dσ

ds
=

dϕ

ds
= κ. (6)

Step 2. If we consider υ = ω = γ
′
σ

∥γ′
σ∥
, then

χ(υ, υ) =
γ

′
σ · γ′

σ

∥γ′
σ∥∥γ

′
σ∥

=
γ

′
σ

∥γ′
σ∥

· γ
′
σ

∥γ′
σ∥

= 1.

Step 3. Finally, taking the derivative on both sides results in

γ
′′
σ

∥γ′
σ∥

· γ
′
σ

∥γ′
σ∥

=
1

∥γ′
σ∥

d

dσ
(∥γ′

σ∥). (7)

We define

ν(σ) = − γ
′′
σ

∥γ′
σ∥

· γ
′
σ

∥γ′
σ∥

. (8)

Now, we demonstrate that ν = ν(σ) is the simplest invariant. By (5)

dϕ

dσ
= 1 =⇒ ∥γ′

σ∥ ·
dϕ

ds
= ±1.

Hence, by taking the derivative on both sides we have
d

dσ
(∥γ′

σ∥ ·
dϕ

ds
) = 0 =⇒ d

dσ
(∥γ′

σ∥) · ϕs = −∥γ′
σ∥ ·

d

dσ
(ϕs)

=⇒ 1

∥γ′
σ∥

· d

dσ
(∥γ′

σ∥) =
d

ds
(
1

ϕs
)

which in fact, according to (7) and (8), shows that

ν =
κs
κ2

. (9)

Clearly, this ratio is the simplest invariant of Angle preserving (similarity) transformations

{x 7−→ λx+ a | λ > 0, x,a ∈ R2}.
Note further that, according to (8), γ must be a regular 2-smooth convex (no three points

on γ are collinear) curve to have the invariant ν well-defined.

- Area
For this case, let χ(v,w) = v × w = |v w| be the determinant of two vectors v and w.
To determine the arc length in this case, we consider a coordinate system for the plane so

that the area of the parallelogram spanned by any pair of vectors v and w equals χ(v,w) and
particularly the determinant χ(γ

′
t, γ

′′
t ) gives the signed area of the parallelogram spanned by the

velocity and the acceleration of the curve γ.
Now, let “α” denote a reparameterization such that γ = γ(α) satisfies

χ(γ
′
α, γ

′′
α) = γ

′
α × γ

′′
α = 1 (10)

which results in
dα

ds
= κ1/3. (11)

Taking the derivative of (10) results in γ
′
α × γ

′′′
α = 0 ⇒ γ

′′′
α + µ γ

′
α = 0. Or equivalently

µ = γ
′′
α × γ

′′′
α . (12)

Section 3 will show γ
′′
α × γ

′′′
α is the simplest non-constant area spanned by the derivatives

of γ, in consequence, µ is the simplest invariant of the area preserving affine transformations
x 7−→ Ax + b, where A ∈ SL(2) and x, b ∈ R2. Besides, γ must be a regular 3-smooth convex
curve to have the intrinsic invariant µ well-defined.
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Remark 1. Convexity & Regularity. According to (6) and (11)

dγ

dσ
=

ds

dσ

dγ

ds
=⇒ dγ

dσ
=

1

κ

dγ

ds
and

dγ

dα
=

dt

dα

dγ

dt
=⇒ dγ

dσ
=

1

κ1/3
dγ

ds

which demonstrate that a regular curve γ in Euclidean geometry is also regular in similarity and
affine geometries, if its Euclidean curvature κ never vanishes, and vice versa.

We, therefore, have the following theorem.

Proposition 1. A curve γ is regular in similarity and affine geometries if and only if γ is
regular and convex in Euclidean geometry.

Accordingly, from now on, “regular” shall refer to “regular in the geometry in question”.

3 Frenet-Serret Frames & Frenet-Serret Formulas

One of the important tools applied to analyze a curve is the Frenet-Serret frame, a moving frame
that provides a coordinate system at any point of the curve that is “best adapted” to the curve
near that point and describes the geometry of the curve at a point completely.

Before studying the Frenet-Serret frame associated with a visual group, we define “the TN
frame” built by the following moving vectors along a regular 2-smooth curve γ = γ(t):

- T is the unit vector tangent to the curve, pointing in the direction of motion: T(t) =
γ
′
t

∥γ′
t∥
.

- N is the normal unit vector, the derivative of T with respect to the arclength parameter of

the curve, divided by its length: N(t) =
T

′
t

∥γ′
t∥
.

Moreover, the Frenet-Serret formulas are vector differential equations that relate inherent
properties of the curve γ. They describe in fact the derivatives of the unit tangent and normal
vectors in terms of each other in which the coefficients are in terms of the intrinsic invariants.

3.1 Euclidean Frenet-Serret frame

Let γ = γ(s) be a regular curve with respect to the Euclidean arc length s. Since ∥dγ
ds ∥ = 1,

therefore, T =dγ
ds is the unit tangent vector. Then

∥T∥ = 1 =⇒ dT

ds
· T = 0 =⇒ ∥dT

ds
∥ cos θ = 0 (13)

which results if γ is not a line, then

dT

ds
⊥ T =⇒ dT

ds
= κ N. (14)

Hence, for a 2-regular curve γ the Euclidean Frenet-Serret frame is the same TN frame:

T =
dγ

ds
and N =

dT

ds
. (15)

Moreover, the associated formulae are given by:

dT

ds
= κN and

dN

ds
= −κT. (16)

Unfortunately, this frame is not well-defined in other visual geometries. In this section we
introduce a suitable Frenet-Serret frame for the scaling and affine transformations.
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3.2 Similarity Frenet-Serret frame

Let γ = γ(σ) be a smooth curve parameterized by the similarity arc length σ. According to
(5)-(8)1

dσ

ds
=

dϕ

ds
= κ, ∥γ′

σ∥ = κ−1, and ν = − 1

∥γ′
σ∥

d

dσ
(∥γ′

σ∥). (17)

Moreover, in terms of the TN frame, we have

T
′
σ = N and N

′
σ = −T. (18)

Now, let γ = γ(σ) denote a regular 3-smooth curve. Then

γ
′
σ = ∥γ′

σ∥ T = κ−1 T, (19)

γ
′′
σ = ∥γ′

σ∥
′
T+ ∥γ′

σ∥ N = −κ−3κ
′
s T+ κ−1 N, (20)

γ
′′′
σ = (∥γ′

σ∥
′′ − ∥γ′

σ∥) T + 2∥γ′
σ∥

′
N = (−κ−4κ

′′
s + 3κ−5κ

′,2
s − κ−1) T− 2κ−3κ

′
s N. (21)

and

γ
′
σ · γ′

σ = ∥γ′
σ∥2 = κ−2, (22)

γ
′
σ · γ′′

σ = −ν ∥γ′
σ∥2 = −κ−4κ

′
s, (23)

γ
′
σ · γ′′′

σ = ∥γ′
σ∥(∥γ

′
σ∥

′′ − ∥γ′
σ∥) = −κ−5κ

′′
s + 3κ−6κ

′,2
s − κ−2. (24)

Furthermore

γ
′
σ × γ

′′
σ = ∥γ′

σ∥2 = κ−2, (25)

γ
′
σ × γ

′′′
σ = −2ν ∥γ′

σ∥2 = −2κ−4κ
′
s, (26)

γ
′′
σ × γ

′′′
σ = (ν2 − ν

′
)∥γ′

σ∥2 = κ−6κ
′′
s + 3κ−6κ

′,2
s + κ−3. (27)

Therefore, the following results are established. According to (19), (20), and (21)

a)
γ

′
σ

∥γ′
σ∥

= T, b)
γ

′′
σ

∥γ′
σ∥

= −ν T+N, and c)
γ

′′′
σ

∥γ′
σ∥

= (−ν
′
σ + ν2 − 1) T− 2ν N, (28)

which are similarity invariant vectors. In addition, identities (22)-(27) result in

a)
γ

′
σ

∥γ′
σ∥

· γ
′
σ

∥γ′
σ∥

= 1, b)
γ

′
σ

∥γ′
σ∥

· γ
′′
σ

∥γ′
σ∥

= −ν, and c)
γ

′
σ

∥γ′
σ∥

· a) γ
′′′
σ

∥γ′
σ∥

= −ν
′
σ + ν2 − 1, (29)

a)
γ

′
σ

∥γ′
σ∥

× γ
′′
σ

∥γ′
σ∥

= 1, b)
γ

′
σ

∥γ′
σ∥

× γ
′′′
σ

∥γ′
σ∥

= −2ν, and c)
γ

′′
σ

∥γ′
σ∥

× γ
′′′
σ

∥γ′
σ∥

= ν
′
σ + ν2 + 1, (30)

which are similarity invariant functions.

Theorem 1. Let γ = γ(σ) denote a regular 2-smooth curve. Then {t̂ = t̂(σ), n̂ = n̂(σ)} given
by

t̂ =
γ

′
σ

∥γ′
σ∥

and n̂ =
γ

′′
σ

∥γ′
σ∥

. (31)

defines a moving frame of the curve γ.

1From now on, to avoid the ambiguity caused by sign and without loss of generality, we assume κ is positive.
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Proof. Let

f1
γ

′
σ

∥γ′
σ∥

+ f2
γ

′′
σ

∥γ′
σ∥

= g1
γ

′
σ

∥γ′
σ∥

+ g2
γ

′′
σ

∥γ′
σ∥

. (32)

Multiplying both sides of (30)-part a) by γ
′
σ

∥γ′
σ∥

f1
γ

′
σ

∥γ′
σ∥

× γ
′
σ

∥γ′
σ∥

+ f2
γ

′′
σ

∥γ′
σ∥

× γ
′
σ

∥γ′
σ∥

= g1
γ

′
σ

∥γ′
σ∥

× γ
′
σ

∥γ′
σ∥

+ g2
γ

′′
σ

∥γ′
σ∥

× γ
′
σ

∥γ′
σ∥

. (33)

results in f2 = g2. Similarly, we have f1 = g1.
We call t̂ “the similarity tangent”, n̂ “the similarity normal”, and the moving fame {t̂, n̂}

the “similarity Frenet-Serret frame”. For example, taking derivative on both sides of identity
(29)-part b) gives the following identity in the t̂-n̂ coordinate plane

γ
′′′
σ

∥γ′
σ∥

= (−ν
′
σ − ν2 − 1) t̂− 2ν n̂. (34)

It is not difficult to prove the following lemma.

Lemma 1. Let γ = γ(σ) be a regular smooth curve. Then(
γ
(n)
σ

∥γ′
σ∥

)′

σ

=
γ
(n+1)
σ

∥γ′
σ∥

+ ν
γ
(n)
σ

∥γ′
σ∥

. (35)

Theorem 2. Let γ = γ(σ) be a regular 3-smooth curve. Then

t
′
σ = ν t̂ + n̂ and n

′
σ = (−ν

′
σ − ν2 − 1) t̂− ν n̂. (36)

Proof. First, by (35) (
γ

′
σ

∥γ′
σ∥

)′

σ

= ν
γ

′
σ

∥γ′
σ∥

+
γ

′′
σ

∥γ′
σ∥

(37)

which proves (36). Also, by (29)(
γ

′′
σ

∥γ′
σ∥

)′

σ

= (−ν T+N)
′
σ = (−ν

′
σ − 1) T− ν N = (−ν

′
σ − ν2 − 1)

γ
′
σ

∥γ′
σ∥

− ν
γ

′′
σ

∥γ′
σ∥

.

We call (36) and (37) (or equivalently, (35)) “the similarity Frenet-Serret formulas”.

3.2.1 Similarity angle & geometric interpretation

By (29) and (30), it is easy to check that

cos(γ
′
σ, γ

′′
σ) =

−ν√
ν2 + 1

, cos(γ
′
σ, γ

′′′
σ ) =

ν2 − ν
′
σ − 1√

(ν2 − ν ′
σ + 1)2 + 4ν ′

σ

, and

cos(γ
′′
σ , γ

′′′
σ ) =

−ν(ν2 − ν
′
σ + 1)

√
ν2 + 1

√
(ν2 − ν ′

σ + 1)2 + 4ν ′
σ

. (38)

sin(γ
′
σ, γ

′′
σ) =

1√
ν2 + 1

, sin(γ
′
σ, γ

′′′
σ ) =

−2ν2√
(ν2 − ν ′

σ + 1)2 + 4ν ′
σ

, and

sin(γ
′′
σ , γ

′′′
σ ) =

ν2 + ν
′
σ + 1

√
ν2 + 1

√
(ν2 − ν ′

σ + 1)2 + 4ν ′
σ

. (39)
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T 

N 

− T 

!(") 

Figure 2: Sketches ∥γ′

σ∥−1γ
′′

σ in the TN frame.

We name these similarity invariants “the fundamental similarity angles”.
Now, let θ = ∠(γ′

σ, γ
′′
σ) be the angle between γ

′
σ and γ

′′
σ . Identities (28) and (29)

γ
′
σ

∥γ′
σ∥

= T and
γ

′′
σ

∥γ′
σ∥

= −ν T+N, (40)

with regard to Figure 2, result in: cot(θ) = − cot(ϑσ = π − θ) = −ν ⇐⇒ ϑσ = cot−1(ν).
We, therefore, have the following theorem.

Theorem 3. Let {t̂, n̂} be similarity Frenet-Serret frame of a regular 3-smooth curve γ = γ(σ).
Let ϑσ = ∠(−γ

′
σ, γ

′′
σ) = ∠(−t̂, n̂). Then

ϑσ = cot−1(ν) (41)

where ν = ν(σ) denotes the similarity curvature of γ.

We call ϑσ “the similarity angle” of γ. It is also easy to check that the angle ϑσ at a point
p ∈ γ is the half of the central angle in the osculating circle C at this point whose vertices are
the touching point p and the intersection of the similarity normal with C, see Fig. 3.

  

( ) 

C 

p 

Figure 3: The similarity angle of a regular smooth curve γ(σ) and its geometrical interpretation.

3.3 Affine Frenet-Serret frame

Let γ denote a regular 3-smooth curve with the Euclidean, similarity, and affine curvatures κ,
ν, and µ. Let s, σ, and α be respectively the Euclidean, similarity, and affine arc lengths. It is
not difficult to check that:

dα

ds
= κ1/3 =

1

∥γ′
α∥

or κ = ∥γ′
α∥−3, and

dα

dσ
= κ−2/3 = ∥γ′

α∥2, (42)

T
′
α = ∥γ′

α∥−2 N and N
′
α = −∥γ′

α∥−2 T in the TN frame of γ, (43)

∥γ′
α∥

′
α = −κ1/3ν

3
and ∥γ′

α∥
′′
α = κ(−ν

′
σ

3
− ν2

9
), (44)

which prove the following identities.
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γ
′
α = ∥γ′

α∥ T = κ−1/3 T, (45)

γ
′′
α = ∥γ′

α∥
′
α T+ ∥γ′

α∥−1 N = −κ1/3ν

3
T + κ1/3 N = −κ−5/3κ

′
s

3
T + κ1/3 N, (46)

γ
′′′
α = (∥γ′

α∥
′′
α − ∥γ′

α∥−3) T = (−κν
′
σ

3
− κν2

9
− κ) T = (−κ−2κ

′′
s

3
+

5κ−3κ
′,2
s

9
− κ) T. (47)

Then
γ

′
α · γ′

α = ∥γ′
α∥2 = κ−2/3, (48)

γ
′
α · γ′′

α = ∥γ′
α∥∥γ

′
α∥

′
α = −ν

3
= −κ−2κ

′
s

3
, (49)

γ
′
α · γ′′′

α = ∥γ′
α∥∥γ

′
α∥

′′
α − ∥γ′

α∥−2 (50)

= −κ2/3(
ν

′
σ

3
+

ν2

9
+ 1) = −κ−7/3κ

′′
s

3
+

5κ−10/3κ
′,2
s

9
− κ2/3, (51)

γ
′
α × γ

′′
α = 1, (52)

γ
′
α × γ

′′′
α = 0, (53)

γ
′′
α × γ

′′′
α =

∥γ′
α∥

′′
α

∥γ′
α∥

− 1

∥γ′
α∥4

= κ4/3(
ν

′
σ

3
+

ν2

9
+ 1) =

κ−5/3κ
′′
s

3
− 5κ−8/3κ

′,2
s

9
+ κ4/3. (54)

Now, we make some results. Identities (45), (46), and (47) give the following corollary.

Corollary 1. Let γ = γ(α) denote a regular 3-smooth curve. Then
- ∥γ′

α∥, ∥γ
′′
α∥, and ∥γ′′′

α ∥ are Euclidean invariants.

- ∥γ′
α∥∥γ

′′
α∥, and ∥γ′

α∥−3∥γ′′′
α ∥ are similarity invariants.

Also, identities (48) and (49) give the outcome below.

Corollary 2. Let κ and ν denote, respectively, the Euclidean and similarity curvatures of a
regular 3-smooth curve γ = γ(α). Then

κ = (γ
′
α · γ′

α)
−3/2, (55)

ν = −1

3
(γ

′
α · γ′′

α). (56)

These identities, indeed, generate the Euclidean and similarity curvatures in affine geometry.
In addition, identity (54), along with (12), demonstrates the following result.

Corollary 3. Let γ = γ(α) denote a regular 3-smooth curve. Then

µ =
∥γ′

α∥3∥γ
′
α∥

′′
α − 1

∥γ′
α∥4

=
1
3ν

′
σ + 1

9ν
2 + 1

∥γ′
σ∥4/3

=
3κκ

′′
s − 5κ

′,2
s + 9κ4

9κ8/3
. (57)

Now, we bring forward the affine Frenet-Serret frames.

Theorem 4. Let γ(α) be a 2-smooth convex curve. Then, {T̂ = T̂(α), N̂ = N̂(α)}, given as
follows, defines a moving frame over the curve γ.

T̂ = γ
′
α and N̂ = γ

′′
α. (58)

Proof. Let
f1 γ

′
α + f2 γ

′′
α = g1 γ

′
α + g2 γ

′′
α. (59)

With regard to (54), multiplying both sides by γ
′
α

f1 γ
′
α × γ

′
α + f2 γ

′
α × γ

′′
α = g1 γ

′
α × γ

′
α + g2 γ

′
α × γ

′′
α (60)

gives f1 = g1. Similarly, we have f2 = g2.
The moving fame {T̂, N̂} is called “the affine Frenet-Serret frame” of the curve γ. Besides,

T̂ and N̂ are respectively named its “affine tangent” and “affine normal”.
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Moreover, it is not difficult to establish the theorem below.

Theorem 5. Let γ = γ(α) be a 3-smooth convex curve. Then

T̂
′
α = N̂ and N̂

′
α = −µT̂. (61)

These equations are called “the affine Frenet-Serret formula” of γ.

3.3.1 Affine angle & geometric interpretation

Identity (59) results in

∥γ′
α∥γ

′′
α = −1

3
ν T+N.

 

T 

N 

T 

 

Figure 4: The affine angle of a regualr smooth curve γ(α).

Hence, according to Figure 4, the angle ϑα = cot−1(ν/3) points out the direction of the affine
normal of γ - named “the affine angle” of the curve γ.

The following figure sketches the Euclidean, similarity, and affine angles and their normal
directions. In fact, each visual angle refers to the angle in the associated Frenet-Serret frame.
Additionally, the interesting point is the similarity and affine angles are both in terms of the
similarity curvature of the given curve.

-d
ir

e
c
tio

n
 

N 

T

 

Figure 5: The visual angles and normals for a regular smooth curve γ.

3.4 Visual Curvatures in terms of the Tangential Angles

This section writes the visual curvatures in terms of the Euclidean tangential angles ϕ(s), see
Fig. 1. For the Euclidean and similarity curvatures, with regard to (4) and (9), we have

κ =
dϕ

ds
and ν =

κ

κs
= − d

ds
(
1

ϕ′
s

).

For the affine case, by (57)

µ =
(drds )

2 − 3r d2r
ds2

− 9

9r4/3
. (62)

in which r(s) denotes the curvature radius of the smooth convex curve γ. On the other hand

(drds )
2 − 3r d2r

ds2

9r4/3
= −1

2

d2

ds2
(r2/3) (63)
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Accordingly, substituting (63) in (62) results in

µ = −1

2

d2

ds2
(r2/3) +

1

r4/3
. (64)

We, therefore, established the following theorem.

Theorem 6. Let ϕ = ϕ(s) be the Euclidean tangential angle of a smooth convex curve γ. Let
κ, ν, and, µ be the Euclidean, similarity and affine curvatures of γ. Then

κ =
d

ds
(ϕ), ν = − d

ds

(
1

ϕ′
s

)
, and µ = −1

2

d2

ds2

(
1

ϕ′
s

)2/3

+ ϕ
′,4/3
s . (65)

Now, we write the affine curvature µ in terms of the tangential angles ϕ(α) as a function of
the affine arc length. It is easy to check that

dα

ds
= ϕ

′,1/2
α and κ = ϕ

′,3/2
α . (66)

As a result

κ
′
s =

3

2
ϕ

′
αϕ

′′
α and (67)

κ
′′
s =

3

2
ϕ

′,1/2
α ϕ

′′,2
α +

3

2
ϕ

′,3/2
α ϕ

′′′
α . (68)

Replacing (66), (67), and (68) in (57) gives

µ =
−3

4ϕ
′,2
α ϕ

′′,2
α + 1

2ϕ
′,3
α ϕ

′′′
α + ϕ

′,6
α

ϕ′,4
α

. (69)

Therefore, we have the following theorem.

Theorem 7. Let µ and ϕ = ϕ(α) denote the affine curvature and the affine tangential angles
of a smooth convex curve γ. Then

µ =
−3ϕ

′′,2
α + 2ϕ

′
αϕ

′′′
α + 4ϕ

′,4
α

4ϕ′,2
α

. (70)

In addition, by (66)

κ2/3
(

1

ϕ′
α

)
= 1. (71)

Taking derivative on both sides with respect to the Euclidean arc length results in

2

3
κ

′
sκ

−1 + κ2/3
d

ds

(
1

ϕ′
α

)
= 0. (72)

By taking the next derivative

2

3
κ

′′
s κ

−1 − 2

3
κ

′,2
s κ−2 +

2

3
κ

′
sκ

−1/3 d

ds

(
1

ϕ′
α

)
+ κ2/3

d2

ds2

(
1

ϕ′
α

)
= 0

=⇒ 2

3
κ

′′
s κ

−1 − 10

9
κ

′,2
s κ−2 + κ2/3

d2

ds2

(
1

ϕ′
α

)
= 0 =⇒ d2

ds2

(
1

ϕ′
α

)
= −2

3
κ

′′
s κ

−5/3 +
10

9
κ

′,2
s κ−8/3

which gives

−1

2

d2

ds2

(
1

ϕ′
α

)
+ κ4/3 =

1

3
κ

′′
s κ

−5/3 − 5

9
κ

′,2
s κ−8/3 + κ4/3. (73)

Hence, according to (57)

µ = −1

2

d2

ds2

(
1

ϕ′
α

)
+ κ4/3. (74)

We, therefore, established the following theorem.

247



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.6, N.3, 2021

Theorem 8. Let µ and ϕ = ϕ(α) denote the Affine curvature and the Affine tangential angles
of a smooth convex curve γ. Let s refer to the Euclidean arc length element. Then

µ = −1

2

d2

ds2

(
1

ϕ′
α

)
+ ϕ

′,2
α . (75)

In fact, what the paper indicates so far is:
“a visual geometry is the structure created by the derivatives of the smooth curves with respect
to a given arc length.”
The following table gives a summary of the formulae we derived in this paper for the visual

curvatures in terms of the dot product, cross product, and norm.

Visual curvatures in terms of inner product, vector product, and norms

Curvature in terms of “·” in terms of “×” in terms of “∥ ∥”

Euclidean −κ = γ
′
s · γ

′′′
s κ = γ

′
s × γ

′′′
s |κ| = ∥γ

′′
s ∥

Similarity −ν =
γ
′
σ

∥γ′
σ∥

· γ
′′
σ

∥γ′
σ∥

−2ν =
γ
′
σ

∥γ′
σ∥

× γ
′′′
σ

∥γ′
σ∥

ν = − ∥γ
′
σ∥

′
σ

∥γ′
σ∥

Affine −µ =
γ
′
α

∥γ′
α∥

· γ
′′′
α

∥γ′
α∥

µ = γ
′′
α × γ

′′′
α |µ| = − ∥γ

′′′
α ∥

∥γ′
α∥

Now, we can have the following definition.

Definition 1. The infinitesimal G-generators of the visual groups are defined as follows.
- For Euclidean geometry

|κ| = ∥γ′′
s ∥. (76)

- For Similarity geometry

ν = −∥γ′
σ∥

′
σ

∥γ′
σ∥

. (77)

- For Affine geometry

|µ| = −∥γ′′′
α ∥

∥γ′
α∥

. (78)

In which γ denotes an arbitrary regular smooth curve.

Accordingly,
to have a numerically invariant expression for the infinitesimal generator of a visual geometry
one only needs to numerically compute the arc length in a fully group-invariant manner, for
example in terms of the joint invariants, and then takes the required derivatives with respect to
it.

4 Structural Equations for Visual Groups

This section explores “the structural equation” of each visual group satisfied by all smooth
curves in the underlying geometry.

4.1 Structural equation in Euclidean geometry

Let γ be a regular smooth curve and consider its TN frame. From (15) and (16)

γ
′
s = T and γ

′′
s = κ N. (79)

Hence
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∥κ−1γ
′′
s ∥ = 1 =⇒ (κ−1γ

′′
s )

′
= ξ1 T =⇒ ξ1 = ⟨(κ−1)

′
sγ

′′
s + κ−1γ

′′′
s , T⟩

=⇒ ξ1 = (κ−1)
′
s⟨γ

′′
s , T⟩+ κ−1⟨γ′′′

s , T⟩ =⇒ ξ1 = −κ.

Therefore
(κ−1γ

′′
s )

′
= −κ T or −κ−1(κ−1γ

′′
s )

′
= T (80)

which result in

(−κ−1(κ−1γ
′′
s )

′
)
′
= ξ2 N =⇒ ξ2 = ⟨(κ−3κ

′
sγ

′′
s − κ−2γ

′′′
s )

′
, N⟩.

Accordingly

ξ2 = (−3κ−4κ
′,2
s + κ−3κ

′′
s )⟨γ

′′
s , N⟩+ (κ−3κ

′
s + 2κ−3κ

′
s)⟨γ

′′′
s , N⟩ − κ−2⟨γ′′′′

s , N⟩
=⇒ ξ2 = −3κ−3κ

′,2
s + κ−2κ

′′
s + κ−3κ

′,2
s + 2κ−3κ

′,2
s − κ−2κ

′′
s + κ =⇒ ξ2 = κ.

Hence

−(κ−1(κ−1γ
′′
s )

′
)
′
= κ N or −κ−1(κ−1(κ−1γ

′′
s )

′
)
′
= N. (81)

Identity (77) (or equivalently (78)), along with (76), establishes the following theorem.

Theorem 9. Euclidean structural equation. Any regular and smooth curve γ = γ(s) satisfies
the following third order differential equation

κ−1(κ−1γ
′′
s )

′
+ γ

′
s = 0 (82)

in Euclidean geometry where s denotes the Euclidean arc length.

Conjecture I. The unique planar geometry with an arclength ι in which any regular smooth
curve γ = γ(ι) is a solution to the the 3rd ordinary differential equation

κ−1(κ−1γ
′′
ι )

′
+ γ

′
ι = 0 (83)

is the Euclidean with ι = s.

4.2 Structural equation in similarity geometry

With regard to (20)

κγ
′
σ = T. (84)

Hence

∥κγ′
σ∥ = 1 =⇒ (κγ

′
σ)

′
σ = ξ1 N

=⇒ ξ1 = ⟨κ′
σγ

′
σ + κγ

′′
σ , N⟩ = κ

′
σ⟨γ

′
σ, N⟩+ κ⟨γ′′

σ , N⟩ =⇒ ξ1 = 1.

Therefore

(κγ
′
σ)

′
σ = N (85)

which results in

(κγ
′
σ)

′′
σ = ξ2 T =⇒ ξ2 = ⟨(κ′

σγ
′
σ − κγ

′′
σ)

′
σ, T⟩

=⇒ ξ2 = κ
′′
σ⟨γ

′
σ,T⟩+ 2κ

′
σ⟨γ

′′
σ ,T⟩+ κ⟨γ′′′

σ ,T⟩ =⇒ ξ2 = 1.

Hence

(κγ
′
σ)

′′
σ = T. (86)
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Continuing the same process gives
d2n

dσ2n
(κγ

′
σ) = T and

d2n+1

dσ2n+1
(κγ

′
σ) = N for all n ∈ N. (87)

Identity (82) (or equivalently (83)), along with and (81), introduces the following theorem.

Theorem 10. Similarity structural equation. Any regular and smooth curve γ = γ(σ)
satisfies the following third order differential equation

(κγ
′
σ)

′′
σ − κγ

′
σ = 0 (88)

in similarity geometry where σ is the similarity arc length and κ is the Euclidean curvature.

Conjecture II. The unique planar geometry with an arc length ι in which each regular and
smooth curve γ = γ(ι) is a solution to the the 3rd ordinary differential equation

(κγ
′
ι)

′′
ι − κγ

′
ι = 0 (89)

where κ is the Euclidean curvature, is the similarity with ι = σ.
In addition, (84) presents the following result.

Corollary 4. In similarity geometry, the set {(κγ′
σ)

′
σ, (κγ

′
σ)

′′
σ} forms the TN frame for a regular

smooth convex curve γ - in other words

∥(κγ′
σ)

′
σ∥ = ∥(κγ′

σ)
′′
σ∥ = 1, (κγ

′
σ)

′
σ ⊥ (κγ

′
σ)

′′
σ, and (κγ

′
σ)

(n+2)
σ = (κγ

′
σ)

(n)
σ . (90)

4.3 Structural equation in affine geometry

By (60)
κ1/3γ

′
α = T. (91)

Hence
∥κ1/3γ′

α∥ = 1 =⇒ (κ1/3γ
′
α)

′
α = ξ1 N

=⇒ ξ1 = ⟨(κ1/3)′αγ
′
α + κ1/3γ

′′
α, N⟩ = (κ1/3)

′
α⟨γ

′
α, N⟩+ κ1/3⟨γ′′

α, N⟩ =⇒ ξ1 = κ2/3.

Therefore

(κ1/3γ
′
α)

′
α = κ2/3 N or κ−2/3(κ1/3γ

′
α)

′
α = N, (92)

which results in

(κ−2/3(κ1/3γ
′
α)

′
α)

′
α = ξ2 T =⇒ ξ2 = ⟨(κ−2/3)

′
α(κ

1/3γ
′
α)

′
α + κ−2/3(κ1/3γ

′
α)

′′
α, T⟩

=⇒ ξ2 = (−4

9
κ−7/3κ

′,−2

α +
1

3
κ−4/3γ

′′
α)⟨γ

′
α, T⟩+ κ−1/3⟨γ′′′

α , T⟩ =⇒ ξ2 = −κ2/3.

Hence

(κ−2/3(κ1/3γ
′
α)

′
α)

′
α = −κ2/3 T or −κ−2/3(κ−2/3(κ1/3γ

′
α)

′
α)

′
α = T. (93)

Continuing the same process gives

−κ−2/3(κ−2/3(κ−2/3(κ1/3γ
′
α)

′
)
′
α)

′
α = N. (94)

Identity (89) (or equivalently (90)), along with (88), results in the following theorem.

Theorem 11. Affine structural equation. Any regular smooth and curve γ(α) satisfies the
following third order differential equation

(κ−2/3(κ1/3γ
′
α)

′
α)

′
α + κγ

′
α = 0. (95)

in affine geometry where α is the affine arc length and κ is the Euclidean curvature.

Conjecture III. The unique planar geometry with an arclength ι in which any regular and
smooth curve γ = γ(ι) is a solution to the the 3rd ordinary differential equation

(κ−2/3(κ1/3γ
′
ι)

′
ι)

′
ι + κγ

′
ι = 0 (96)

where κ is the Euclidean curvature, is the affine with ι = α.
Note, the coefficients in the structural equations (79), (85), and (92) are merely in terms of

the Euclidean curvature and its derivatives in the visual geometry of interest.
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